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Abstract

Recently developed Large Language Models
(LLMs) have unprecedented natural language
ability. However, they can be prone to halluci-
nate, where the LLM relays false information
with the same authority as true information.
Among current hallucination mitigation tech-
niques, there are relatively few that attempt to
predict hallucinations before inference. Addi-
tionally, most methods rely on models that are
similar in computational size to the LLM. In
order to address this, we developed HalluciB-
ERT, a BERT-based model that scores prompts
according to their likelihood of producing a hal-
lucination in a LLM response. HalluciBERT
outperformed our naive model on confidence
score prediction with high correlation between
predicted and ground truth scores, but had lim-
ited accuracy in the task, with only 51.79% of
scores at most 10 points from the ground truth.

1 Introduction

Recently developed generative Large Language
Models, such as GPT-3 [4], have made signifi-
cant improvements in language generation over
their predecessors. Modern LLMs outperform early
models on various benchmarks and are able to pro-
cess and respond in natural language to a nearly
human degree [14]. They can also be trained on
billion-token datasets and recall information in a
large range of topics with accuracy and depth.

However, these LLMs can sometimes produce
hallucinations, in which false information is re-
layed with the same authority as true information
in the model’s response [16]. As these LLMs
evolve and are given more real-world responsibili-
ties, it becomes increasingly vital that they respond
truthfully, preventing possible harm and limiting
the spread of misinformation. Therefore, methods
must be developed to prevent or mitigate hallucina-
tions to fully realize the potential of LLMs.
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Many methods currently exist to detect and miti-
gate hallucinations in LLMs, but most involve mod-
els that are equally as large as the original LLM,
increasing computational and monetary need [16].
To meet this need some hallucination detection is
preventative, wherein the prompt is judged before
inference. This offers the benefit of preventing
the output of inaccurate information and saving
the computational resources that would have been
used on inference. Notably, hallucinations may
also sometimes be desired, particularly in creative
applications [10].

One method of hallucination mitigation uses
scores to quantify the likelihood of a model hal-
lucinating [16]. These scores are usually calcu-
lated from the content of a LLM response. Using
a scoring system offers more insight and control
to users of LLMs. Prediction of a score would
also be a simpler task for a language model rather
than proposing changes in the language of a LLM
response.

In response to these challenges, our work fo-
cuses on developing a novel method for predicting
the likelihood of hallucinations in LLLMs based on
the content of prompts before model inference. We
aim to construct an smaller auxiliary model using
BERT [6] to reduce the cost of hallucination pre-
diction. We created a dataset of LLM prompts and
corresponding confidence scores, trained HalluciB-
ERT, our BERT-based model, to predict the like-
lihood of hallucinations based on prompt content,
and evaluated its effectiveness.

2 Related Works

2.1 Mitigation of Hallucinations

Hallucinations in LLMs are a recognized issue, and
detection, explanation, and mitigation of halluci-
nations is an ongoing area of research. Hallucina-
tion mitigation techniques include curating training



data, honesty-oriented fine-tuning, and altering in-
ference with knowledge retrieval or exploitation of
uncertainty [16]. One method to improve factual-
ity in the training set includes implementation of
a heuristic to more carefully select which internet
data is included in the training set [9]. Another
utilizes an LLM to annotate and filter a dataset
for fine-tuning, allowing the model to view factual
examples to decrease prevalence of hallucination
[5]. At inference, retrieval augmentation, where
the LLLM fact checked itself at multiple steps to
improve its response, has also been explored [11].

2.2 Detection of Hallucinations

Within the field of hallucination mitigation is hal-
lucination detection. Hallucination detection meth-
ods have been classified into inference classifiers,
uncertainty metrics, self-evaluation, and evidence
retrieval [15]. Among the methods, LLMs have
been used to judge the truthfulness of a prompt,
with broad agreement marking an output with a
lower likelihood of hallucination [18]. Without
needing LLM inference, the truthfulness of an out-
put can also be assessed using the model’s internal
state to train a classifier with its activation values
[2]. Another method tagged LLM outputs that were
identified to be outside of their domain knowledge.
When a tagged model was supplied with additional
context, hallucination was reduced [7].

2.3 Uncertainty Scoring

Scoring is a commonly used method to identify
hallucination, as it allows for easy interpretabil-
ity and comparison. Measuring the confidence of
a language model’s output through its logits was
first discussed in the context of machine transla-
tion using a multi-layer perceptron [3]. Scoring
metrics also include Answer Uncertainty Disparty,
or AUD, POLAR, and Probability Scoring. AUD
is calculated from the average of the differences
of semantic features between answers provided to
previously known and unknown questions [1]. PO-
LAR, Pareto optimal learning assessed risk, relies
less on natural language features, and uses a Pareto
optimal self-supervision framework to produce a
risk score for LLM responses [17]. The scoring
method we used, called probability scoring, calcu-
lated the score by taking the minimum of the log
probabilities, or logits, of important tokens. [14].

3 Method
3.1 Dataset

Curating a Prompt Dataset To create a dataset
of prompts, we used a subset of Alpaca’s question-
answer dataset [12]. We chose this source be-
cause it has prompts with varying types of ques-
tions that would have different likelihoods to re-
sult in hallucinations. The Alpaca dataset contains
52K question-answer pairs, generated by ChatGPT
through a self-instruction method seeded with hu-
man prompts. We made a subset of 12K ques-
tions from the question-answer pairs of the Alpaca
dataset to be our prompt dataset. These questions
were filtered to vary less in length, so length of
prompt did not significantly influence results. To
generate confidence scores, we used the probability
score method described in Varshney et al., 2023
[14].

Generating Output Tokens and Probabilities
Using OpenAl’'s API, we ran each of our 12K
prompts through text-davinci-003 to get the output
tokens and their corresponding log probabilities.
We chose this model because it is one of a few Ope-
nAl models that returns output log probabilities
along with the response. Further, using their API
allowed us to generate results faster than if we used
our own compute.

Identifying Important Concepts We define a
concept as the concatenation of one or more con-
secutive output tokens in a response, capturing the
main ideas of the text. In our approach to identify-
ing important concepts, we initially experimented
with various methods, including Keyword Extrac-
tion and Entity Extraction [14]. However, these
techniques did not yield satisfactory results in accu-
rately capturing the comprehensive set of concepts
as per our definition. As with the work that pro-
posed this method, the Instructing Model method
demonstrated superior performance in concept ex-
traction tasks [14]. Consequently, we utilized Ope-
nAI’s API with their gpt-3.5-turbo-1106 model for
this purpose. To generate the concepts, we passed
each output response through this model with the
prompt. Examples are provided in Appendix A.
The model outputs a list of important concepts
which are used in calculating the confidence score.
However, for some responses, the model would out-
put invalid concepts that were not aligned with our
definition. We ignored these responses, reducing
our dataset by 367 data points.
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Figure 1: Dataset Generation and Model Pipeline.

Calculating Confidence Scores As input to get
prompt confidence scores, we used the log probabil-
ities of the tokens, identified as concepts by gpt-3.5-
turbo-1106, from the output from text-davinci-003.
This was done because gpt-3.5-turbo-1106 is the
superior model, but only text-davinci-003 gave us
output logits.

To calculate confidence score, we define C' as
the set of output token indices that are included in
any identified concept for a given response. Ad-
ditionally, we define p; as the (normalized) output
token probability of token i. We define a confi-
dence score, S, for the corresponding prompt as:

§= ?éi({}{pi} (M

Each score is in the range [0,1]. The minimum
of the log probabilities of the concept tokens was
taken to be the confidence score of the whole
prompt. This has previously been shown to be the
most effective, as we want to define the prompt’s
confidence at the point where the model is the least
confident in its answer [14]. When a model begins
to hallucinate, the first token in its hallucination
likely has a low probability, but the subsequent to-
kens may have high probabilities. As such, taking
the average of logits has little correlation to hal-
lucination. Taking the minimum more accurately
aligns with the idea of predicting if a hallucination

ever occurs. After calculating all scores, we scaled
the confidence scores to a range of [0,100].

Analysis of Distribution of Confidence Scores
When we created our original dataset, we noticed
that the distribution of the confidence scores was
very skewed toward the lower end of the distribu-
tion. The remnant of this can be seen in Figure 2A.
To remedy this, we created a more uniform subset
of 2K total prompt-confidence score pairs, which
was used for the training method. The remaining
10K data points were kept for additional model
testing.

3.2 Models

To predict LLM hallucinations with a smaller
model, we selected BERT to be the basis of the
model. BERT is an extensively used masked lan-
guage model. At 110M parameters [6], it is sig-
nificantly smaller than modern LLMs like GPT-3,
which is 175B parameters [4]. BERT allows us to
learn contextual word embeddings of our prompts.
To transform these embeddings into a confidence
score, we added a fully connected layer to the end
of BERT. We refer to this model at HalluciBERT.
We also created a naive model to act as a baseline
for comparison to HalluciBERT. Our naive model
predicts the mean of all confidence scores for the
expected distribution, as this is the most effective



simple approach. The expected distribution we
used was the training set when ran on the 2K model,
and the average of all 12K data points for the 10K
dataset, as there was no training set for the 10K
dataset.

3.3 Training

The generated 2K dataset was split with an
80/10/10 training-validation-testing ratio. The
loss function used was Mean Squared Error (MSE).
Training was done for 10 epochs. Further details
can be found in Appendix A.

3.4 Evaluation

Post-training, we evaluated the model using sev-
eral metrics, including MSE, Mean Average Error
(MAE), and accuracy, which we define as the per-
centage of predictions within a certain range of the
actual value. These metrics helped us understand
the model’s effectiveness at the prediction task the
reliability of its predictions. We also analyzed the
model’s predictions compared to the actual data,
looking at the best and worst 10% of predictions to
find any patterns or correlations, such as the rela-
tionship between the number of important tokens
in a prompt and the confidence score. We also com-
pared word count differences between the highest
and lowest confidence scores.

4 Results

Table 1 contains the MAE, MSE, and accuracy
of our two models: HalluciBERT and the naive
model. The table shows their performances on our
two datasets: the 2K Uniform and 10K datasets.
Accuracy was was defined based on whether the
predicted confidence score was within 10 of the
ground truth. On the 2K Uniform dataset, Hal-
IuciBERT had an MAE of 15.80, MSE of 454.98,
and accuracy of 0.4336 and outperformed the naive
model on all metrics, which were an MAE of 23.95,
MSE of 786.91, and accuracy of 0.2358. On the
10K dataset, HalluciBERT had an MAE of 13.63,
MSE of 357.36, and accuracy of 0.5282 which also
outperforms the naive model on all metrics at an
MAE of 14.82, MSE of 488.70, and accuracy of
0.5179.

The first column of Figure 2 (defined as Figure
2A) shows histograms of the distribution of confi-
dence scores in the testing set of the 2K Uniform
and 10K datasets. The second column (defined as
Figure 2B) shows confusion matrices of accura-

cies of our HalluciBERT model. The third column
(defined as Figure 2C) shows the cumulative distri-
bution function (CDF) of the absolute difference
between the predicted and ground truth confidence
scores for the naive and HalluciBERT models on
both testing sets.

The histograms show that in the 10K dataset, the
classes of scores appear to be skewed toward the
lower end of the distribution. For the 2K Uniform
dataset, the distribution appears significantly more
uniform than the 10K dataset. Additionally, the
predicted confidence scores are more skewed to-
ward lower values than the ground truth confidence
scores in the 10K dataset. This result also justified
our creation of the 2K Uniform dataset.

The confusion matrices allow us to scrutinize
which data points are being misclassified. They
also allow us to easily view how many data points
are being misclassified into the next lowest or next
highest confidence score range. We can see how
often HalluciBERT predicts the correct class by
looking at the diagonal in the confusion matrix.
The minimum value on this diagonal on the 2K
Uniform is 0.27 and the maximum is 0.40, so Hal-
luciBERT’s accuracy was between 27% and 40%
when using the range in the matrix. Results im-
prove even more on the 10K dataset, with a range
of accuracy of 44% to 68%.

The CDFs allow us to visualize the absolute error
across the testing set. We notice that most of the
CDF of our HalluciBERT model more left than the
naive model on the 2K Uniform dataset, indicating
that HalluciBERT has lower error on most data
points, but also contains significant error outliers
toward the top of the curve. On the 10K dataset,
there is not much difference between both models,
indicating less of an advantage of HalluciBERT

In order to verify that our confidence score met-
ric was capturing a meaningful features in the
prompts, we analyzed the content of the prompts.
The results of this is shown in Table 2. We discov-
ered that some words in the prompts were more
often associated with a lower confidence score, and
some words were associated with a higher confi-
dence score.

5 Discussion

HalluciBERT Does Not Learn Distributions
One of the concerns with the original 12K dataset’s
skew towards low confidence scores was that Hal-
IuciBERT would simply learn to always predict
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Figure 2: Performance of HalluciBERT and our Naive Model. (A) Charts show the distribution of scaled confidence
scores between HalluciBERT’s predicted scores versus the ground truth distribution. (B) Rows of the confusion
matrices show the normalized distribution of predicted confidence scores when compared to the corresponding
ground truth values. (C) The graphs represent the cumulative distribution function of the absolute difference between
HalluciBERT’s predicted confidence scores and the ground truth values.

HalluciBERT Naive
Test Dataset
MAE MSE  Accuracy MAE MSE  Accuracy
2K Uniform 15.80 45498 0.4336 23.93 786.91 0.2358
10K 13.63 357.36 0.5282 14.82 488.70 0.5179

Table 1: MAE, MSE, and Accuracy for HalluciBERT and our Naive Model on both datasets.

Confident Words Uncertain Words
The 649 A -479
Name 172 Generate  -207
What 99 Describe -147
Identify 55 Poem -95
One 39 Create -77

Table 2: Weighted frequencies of words corresponding
to high and low confidence scores. To calculate this, we
add 1 each time a word appears in a prompt in the top
10 percent of all scores. We subtract 1 when they appear
in prompts in the bottom 10 percent.

values near the mean of the dataset. When training
on this non-uniform dataset, we saw this occur, as
the performance of HallluciBERT was very close to

that of the naive model on the 12K testing set. This
meant that the model was not discouraged enough
for always making the same prediction. This out-
come led to us creating the 10K and 2K Uniform
datasets.

Once the 2K Uniform dataset was created and
trained on, we saw the range of predicted con-
fidence scores greatly increase. As seen Figure
2A, the distribution of predicted confidence scores
closely matched that of ground truth. Additionally,
as can be seen in Figure 2C, the performance of
HalluciBERT and the naive model on this dataset
are quite different, indicating that HalluciBERT is
not just guessing the mean. However, the histogram
does not provide any information of whether the
corresponding predicted and ground truth values



are in the same bucket. It only shows the total num-
ber of predicted and ground truth in some bucket,
so we are limited in the conclusions we can draw
from it.

The skew in the predicted confidence scores is
most striking in our 10K dataset, where its distri-
bution shares a leftward skew and similar visual
behavior. The predicted confidence scores from
HalluciBERT does seem to follow the same gen-
eral pattern as the ground truth, but the distribution
is less extreme. Additionally, HalluciBERT had a
tendency to avoid low or high outlier scores, as the
loss reduction from guessing them would not be as
high as guessing the middle of the distribution.

HalluciBERT Predicts Confidence Scores with
High Correlation to Ground Truth In addition
to having the correct distribution, it is important to
note what kind of values HalluciBERT is better at
predicting and if there any noticable pattern in its
failure to predict correct confidence scores.

As such, looking at the confusion matrix in Fig-
ure 2B of ground truth versus predicted scores help
us accomplish this. Having 5 different ranges, in-
stead of the 20 in the histogram, could be more
consistent with our understanding of an accurate
prediction. We then see there is high correlation
between predicted confidence scores and ground
truth.

Looking at the numbers on the confusion ma-
trices, we see that the accuracy values for Hallu-
ciBERT on both datasets are all higher than the
expected 20% accuracy of the naive approach. The
confusion matrix also allows us to easily explore
increasing our definition of accuracy. If we were
to expand accuracy to include those in the next
higher and next lower predicted class, by adding
up the value in the higher and lower neighbor of
the confusion matrix, HalluciBERT ranges from
75% to 96% accuracy on the 10K dataset. This is
an improvement from 44% to 68% with only the
boxes in the diagonal. These are good accuracies,
and these new bounds are still meaningful. Overall,
our model rarely predicted values that were highly
inaccurate, which implies that correlation between
prompt and confidence score in HalluciBERT does
exist.

Accuracy Improves Rapidly with Tolerance
The goal of our work was to predict confidence
scores within 10 of their actual score. We fell short
of this on both of our testing sets, with HalluciB-

ERT on the 2K Uniform data having a MAE of
15.80 and on the 10K dataset having a MAE of
13.63, as seen in Table 1. Furthermore, our accu-
racy for neither dataset was very high, with the
2K dataset at 0.4336 and the 10K dataset at 0.5282.
These would not be acceptable if we were to deploy
this model in real use cases, but it would insightful
to determine how our model performs if we relax
the definition of being accurate.

As previously discussed, we were hoping to have
our model accurate within a score of 10. However,
depending on the specific use case of such a hal-
lucination prediction model, the tolerance, or how
close the confidence score needs to be to the ground
truth value, could be higher. By relaxing tolerance
to 20, which could be thought of as a 1 — 5 scale, or
even to a binary classification task, the model may
be useful and applicable. In particular, we see that
both CDF curves in Figure 2C increase steeply near
0% of examples, but the slope decreases steadily
near 80%. This means that a larger accuracy thresh-
old would greatly improve results. We determined
that at a tolerance of 15, HalluciBERT would have
an accuracy of 0.5974 on the 2K Uniform dataset
and an accuracy of 0.6591 on the 10K dataset. Ata
tolerance of 20, HalluciBERT would have an accu-
racy of 0.7282 on the 2K Uniform dataset and an
accuracy of 0.7614 on the 10K dataset. By making
the definition of accuracy a bit more lenient, it can
be understood that HalluciBERT could be accurate
enough to be useful and deployable.

Words in Prompt Correlate to Confidence Score
We analyzed the content of the prompts, and found
a relationship between the presence of certain
words and confidence score. In Table 2, ’the’ is
associated with confident prompts and ’a’ is as-
sociated with unconfident prompts. This makes
sense, as ‘the’ is the definite article and specifies
some noun, and ’a’ is the indefinite article and does
not specificy some noun. This pattern also occurs
with other words. Words like what’ and ’identify’
would have specific correct answers. Assuming the
model would be able to come up with the correct
answer or say that it does not know, it would be
confident in it answer. On the other hand, words
such as ’describe’ or ’create’ would not have spe-
cific correct answers. Since there would be many
different options of response, the single response it
chooses would not have a high confidence. How-
ever, the correlation between a word and confidence
score was not always consistent, so purely using the



words as a feature would not be accurate. There-
fore, a language model such as BERT is needed to
take into account the nuances of the language of
the prompt.

Limitations Our study faced several limitations.
First, it relies on a pre-existing dataset, limiting the
scope and diversity of our training data. This re-
liance restricts our findings to the specific contexts
represented in the dataset, which affects the gen-
eralizability of our model. Second, the size of our
training set was constrained by the costs of the API
calls. This limitation restricted the amount of data
available for training, which limits the effectiveness
of our model.

Further, our approach is dependent on LL.Ms for
concept extraction, specifically GPT-3.5. GPT-3.5
occasionally failed in accurately mapping extract-
ing concepts from tokens. This was addressed by
removing prompts where accurate concept extrac-
tion failed, but this further limited the size of our
training set.

Since HalluciBERT was trained on a dataset
from GPT-3.5, its effectiveness is limited to this
LLM. Testing HalluciBERT on other models like
LLaMA yielded significantly different results, sug-
gesting that our approach may not be directly appli-
cable to other models. Thus, fine-tuning the base
architecture again for each specific model could be
needed to accommodate these differences.

Lastly, our confidence score calculation is based
on the minimum logit value, focusing only on the
probability of at least one hallucination and not
explicitly considering the probability of multiple
hallucinations. To address this and simplify the
task further, HalluciBERT could use binary classifi-
cation to determine whether a hallucination is more
probable than not, as was done with the model
that first used the minimum logit confidence score
technique [14].

6 Conclusion

In this paper we created a novel model, HalluciB-
ERT, to predict confidence scores from prompts
before inference. HalluciBERT outperformed our
naive model on MAE, MSE, and accuracy, defined
as having a prediction within 10 of the ground truth
confidence score. Despite this, HalluciBERT did
not achieve a high accuracy with this definition.
However when the accuracy threshold is loosened
to 15 or 20, which can be useful bounds under dif-
ferent conditions, the accuracy notably improves.

These results demonstrate that while HalluciBERT
did not achieve good accuracy with the desired the
threshold, our method and approach hold promise,
and additional work should be done to better realize
our goal of training a smaller, more computation-
ally efficient model to predict confidence scores
pre-inference.

For future work, our goal is to not only to en-
hance HalluciBERT"s ability to predict hallucina-
tions in other LLMs but to also align it closely with
the core NLP values of reliability and generalizabil-
ity. To this end, we could create a larger and more
diverse dataset made up of content from different
LLMs for fine-tuning. This approach could im-
prove the model’s performance across more varied
data distributions and LLM architectures. Addition-
ally, we intend to evaluate other BERT variants and
transformer encoders. This exploration would fur-
ther reduce model size and optimize computational
efficiency at the hallucination prediction task.

7 Impact Statement

Our research attempts to build a more efficient
model that can predict the likelihood of hallucina-
tions. This work addresses hallucinations, in which
LLMs can output falsehoods with the same con-
fidence as truths. As LLMs and Al models more
broadly become more prevalent and powerful, such
models could come to worsen the already prevalent
problem of misinformation. Our work stands to ad-
dress this issue, by empowering users of LLMs to
gauge the factuality of their prompts. The preventa-
tive aspect also saves time and compute that would
otherwise be spent on LLM inference. If such a
prediction model was instituted on a large scale, it
could lessen resource and electricity consumption,
essential to preventing the worsening of the climate
crisis.

Our research involved using previously created
tools and procedures, so the ethics of these need to
be taken into account. BERT, the model we used
to constructing contextualized word embeddings,
has demonstrated tendencies for racial, gender, and
other biases, and our modifications do not directly
address those issues [8]. Consequently, there is a
risk of these biases influencing our model’s predic-
tions in hallucination detection. This could poten-
tially lead to biased treatment of content related to
specific racial or gender groups.

Furthermore, neither the Alpaca dataset nor the
generated dataset we used was not inspected manu-



ally for any significant bias. Any bias in the dataset
would influence the model’s learning process and
its outcomes [13]. The Alpaca dataset is also lim-
ited in the types and category of prompts it has, so
if our model is presented with questions outside
of the training data distribution, the way it would
assign confidence scores may be biased.

In light of these considerations, our research
should be understood as a step in the ongoing jour-
ney of Al development. We highlight the need for
further research to ensure that we advance Al mod-
els that are equitable, sustainable, and beneficial
for humanity.
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A Appendix

Prompt for Concept Identification Using
gpt-3.5-turbo-1106 we used the following few-shot
prompt to generate concepts [14].

Identify all the important
keyphrases in order from the
following text and return a comma
separated list.

Text: John Russell Reynolds

was an English physician and
neurologist who made significant
contributions to the field of
neurology.

Response: John Russell Reynolds,
English, physician, neurologist,
neurology

Text: He was born in London in
1820 and studied medicine at the
University of London.

Response: London, 1820,
medicine, University of London

Text: After college, he worked
as a lawyer for the PGA Tour,
eventually becoming the Tour’s
Deputy Commissioner in 1989.
Response: college, lawyer, PGA
Tour, Deputy Commissioner, 1989

Text: <INPUT>

Response:

Training Set-up We used PyTorch and Google
Colab to write the code for our paper. For training,
we used the AdamW optimizer, a learning rate of
Se-5, and a batch size of 2.



